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A three-dimensional solution for waves in the 
lee of mountains 
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(Received 14 November 1958) 

This paper presents a three-dimensional small-perturbation approach to the 
problem of waves produced in a statically stable stratified air stream flowing over 
a mountain. The fundamental solution for a doublet disturbance in an air stream 
in which the parameter Z2 = qpI V 2  is constant is calculated, and then is extended 
to that for a disturbance due to a circular mountain in the same air stream. 
A simple approximation to the known two-dimensional flow over an infinite 
ridge is also given. The second (‘upper ’) boundary condition for the solutions is 
determined in a rigorous analytical manner, assuming the presence of small 
friction forces, or, alternatively, of time dependence. It is hoped that this will 
settle the controversy which exists over the choice of this condition. 

The results show that the behaviour due to  a doublet is peculiar and not truly 
representative of that due to a mountain. The latter shows waves which decay 
down-stream and are contained in a strip, the width of the strip being determined 
by the radius of the mountain, An interesting result is that the circular mountain 
can give rise to waves which have greater amplitude than those produced by the 
infinite ridge under the same conditions. 

In  some previous papers the waves produced by the infinite ridge have been 
neglected, but the present paper shows that in many cases this procedure is not 
justifiable. The detailed solution for the waves behind a circular mountain has 
a form which emphasizes the importance for lee-wave production of ‘resonance ’ 
between the width of the mountain and the characteristic length I-1 of the air 
stream. 

1. Introduction 
The problem of airflow over mountains, and, in particular, the formation of 

stationary atmospheric lee waves, has received considerable theoretical attention 
in recent years, Many examples of actual wave systems have been described in 
various meteorological journals, observations being made from the ground, on the 
clouds which often form in the wave crests, and from gliders by fmding the up- 
currents. In  California, where the Sierra Nevada produces what is probably the 
most spectacular of all lee-wave systems, many glider flights to altitudes of 
30,000 to 40,OOOft. have been made. Waves with amplitudes and velocity com- 
ponents large enough to affect powered aircraft are often encountered, and this 
alone is a sufficient reason for a thorough investigation. The results of observa- 
tions are well summed up by Corby (1954), who also gives a survey of the 
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theoretical treatments then available. These are essentially of two types, depend- 
ing on the nature of the air stream considered. All are linear perturbation theories, 
and in the first place they are restricted to the two-dimensional flow over an 
infinitely long ridge. 

The first investigations, restricted to  an air stream in which both velocity and 
static stability are uniform, were by Lyra (1943) and Queney (1947). Lyra used 
a complicated Green’s function method to work out the flow over a small ridge of 
rectangular cross-section, while Queney used a line disturbance on the ground, 
later (1948) extending this by use of Fourier Transforms to obtain the flow over 

Hb2 the ridge given by 
ax ,  0) = 9 

where c(x, x )  is the vertical displacement of the streamline from z = const., 
z being height, with the ground at  z = 0, and x the horizontal (stream direction) 
co-ordinate. The height of the ridge is H ,  and b is the half-width of the ridge at  
height 4H. The results of all these investigations are basically the same, giving 
waves behind the ridge, with amplitudes which increase with height and fall off 
down-stream. Queney does show, however, that if b is large enough the waves are 
so small as to be negligible. (Queney also considers motion on a much larger 
scale, in which the effects of the earth’s rotation are included, but this is beyond 
the scope of the present paper.) The waves shown by these theories are unlike 
those which are usually observed in practice. These latter reach their maximum 
amplitudeat some middle level, and theirrate of decay with distance down-stream 
is slow, and can reasonably be attributed to friction, which is, of course, neglected 
in all these theories. 

Scorer (1949) decided that the ‘uniform air stream’ assumption of Lyra and 
Queney was too unrealistic, and he considered an air stream consisting of two 
layers, in each of which the parameter 

is constant; here g is the gravitational acceleration, V ( z )  the main-stream velocity, 
p = O’/O is the parameter governing the static stability of the atmosphere (where 
O(z) is potential temperature), and primes denote differentiation with respect to z. 
Using the ridge shape given by ( l ) ,  and again the Fourier Transform method, 
Scorer finds that waves of the type usually observed occur if 

where I , ,  Z, are the lower and upper layer values of I ,  and h is the depth of the lower 
layer. In  other words, Z2 has to decrease upwards in a relatively short distance by 
a sufficiently large amount. Thus it would appear that the nature of the profile is 
the factor which determines the type of waves that appear. Mathematically, the 
effect of the discontinuity in 12 is to introduce a pole singularity into the Fourier 
Integral for the displacement of the streamlines, and it is this pole which gives 
the non-decaying waves. In  Queney’s theory for the uniform air stream the only 
singularity is a branch point. 
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Only Scorer & Wilkinson (1956) have done any work on mountain waves in 
three dimensions, integrating the two-layer solution over an infinite number of 
ridges at all angles to the undisturbed stream to produce the flow over circular and 
oval hills. This time the waves are smaller and are contained in a wedge behind 
the hill. They are very similar to water waves behind a ship. 

In  another paper, Scorer (1953) has considered the flow over a ridge when Z2 is 
constant (which includes Lyra’s and Queney’s solutions), but he has neglected the 
wave term on the grounds that the half-width b of the ridge is large enough for it 
to be negligibly small. Scorer then goes onin the same paper to a further discussion 
of lee waves, this time with a three-layer model, but he does not point out that 
these waves would also be negligible (as will appear below) for the values of b for 
which the first part of the paper is valid. Corby & Wallington (1956) have 
investigated the variations of the amplitude of the two-layer waves, and they 
show that if either b is increased with H constant, so that the slope of the surface 
is decreased, or if b and H are increased in the same proportion, so that the slope 
remains constant, the amplitude reaches a sharp maximum and then falls off 
rapidly. If the slope is allowed to decrease, the maximum occurs for smaller b than 
that needed if the slope is kept constant, although the rates of fall-off from the 
maxima are similar. Thus the width is the important parameter of the ridge as 
far as wave amplitude is concerned, although increasing the height of the ridge for 
fixed b increases the amplitude in proportion. Corby & Wallington have compared 
these sharp maxima with a ‘resonance ’ of the air stream with the mountain. The 
present paper will show that, in both two and three dimensions, the one-layer flow 
with l2  constant gives this same effect, and in fact, in two-dimensions, the one- and 
two-layer solutions give exactly the same curves of amplitude against mountain 
width. 

Scorer’s neglect of waves in the first part of his paper, where, to be sure, they 
may be difficult to justify by observation, but not in the second part, where they 
are well supported by observation, is consequently misleading. Also, on general 
grounds, one would expect waves to be formed when any stable air stream is 
disturbed, and the Z2-profle must therefore determine the kind of waves and not 
whether or not they exist. 

Different writers have disagreed in the choice of the so-called upper boundary 
condition. The wave equation (31) below requires two boundary conditions, the 
first being automatically determined by the choice of the ground shape, and the 
second, which is arbitrary, being needed to remove any wave train which may 
otherwise occur up-stream. The present paper uses two methods which are 
essentially the same, as will be seen in $ 2 .  The first device, originally used by 
Rayleigh, assumes a small amount of friction (see Lamb 1932, $242), which is 
eventually allowed to tend to zero, and the second assumes a time dependence, 
finally letting time tend to infinity to give the steady-state solution. Each of 
these methods gives the result used by Queney. Corby & Sawyer (1058a),  who 
assume the atmosphere has a rigid lid on top and then let the height of the lid 
become infinite, reach the same conclusion. Scorer, in all his papers, considers 
energy flow, and chooses the other alternative boundary condition-a change of 
sign only. The controversy over this condition has gone on for some time (see, for 
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instance, Scorer 1954, 1958; Corby & Sawyer 1958a, b) ,  but it may perhaps be 
hoped that the rigorous discussion in this paper will be accepted as establishing 
the former condition beyond any doubt. 

It seemed to the author that the existing mathematical theories of lee waves, 
especially in three dimensions, were not altogether satisfactory, and the present 
work was undertaken to re-examine the whole question. We begin, following the 
method used in the absence of gravitational effects by Lighthill (1957), by deter- 
mining the three-dimensional flow due to a weak source in the given air stream 
V(z) .  This ‘fundamental solution’ has proved to have considerable value in 
several other problems, and it therefore seems worth while giving it here, even 
though the results of Q 5 show that it is not truly representative of the behaviour 
produced by a mountain in the same air stream. After taking Fourier transforms 
of the equations of motion, a single equation for the disturbance is derived. The 
work is then restricted to the case when Z2 = const. and V” = 0 throughout the 
atmosphere, in order to solve the equation reasonably simply. 

From this solution we infer the solution for a doublet in the stream or x-direction 
in the form of a double Fourier integral for the streamline disturbance, the second 
boundary condition being found as stated above. The first integration can be 
performed exactly, but the second is much more difficult and has to be approached 
by suitably deforming the path of integration. It gives a non-wavy disturbance, 
for which an asymptotic expansion, symmetrical up-stream and down-stream of 
the doublet, is found for large x, and also wave terms which appear only down- 
stream. Three separate approximations to the latter have been found, all for large 
2, one for y small (where y is the horizontal co-ordinate perpendicular to the 
stream), one for larger y, and one for large z. The mathematics involved in finding 
the one for small y (actually given second in the paper) is somewhat complicated, 
and is given in an appendix, the results simply being quoted in Q 3. 

The behaviour of the wave term for the doublet disturbance is rather peculiar. 
On y = 0, immediately behind the doublet, the waves decay down-stream like 
xd, but as y increases the rate of decay decreases, and the dominant term in the 
larger y approximation has no decay at all. As height is increased, the amplitude 
of the waves tends to a finite value; if V‘(z) > 0 this may be zero. The wave crests 
in planes at constant height are hyperbolic in shape, their asymptotes all passing 
through the origin and making a smaller angle with the x-axis the further the 
waves are down-stream. The changing behaviour as y increases is impossible to 
explain physically, and it is assumed to be due to the unrealistic character of the 
doublet which, being a point disturbance, contains no significant length. 
Accordingly, the solution for larger y is extended to the case of a horizontal line of 
doublets perpendicular to the stream, which has such a length, and this shows 
no unexpected behaviour, the waves for y large compared with half the length of 
the line decaying simply as x-l. 

Approximations to Queney’s solution for the infinite line doublet and the ridge 
are given in Q 4 to enable comparisons to be made, and in Q 5 the three-dirnensiorrd 
theory is extended to cover, as far as possible, the circular hill given by 
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An infinite line of these hills gives the ridge (1). The integral is more difficult to 
deal with in this case, even though there are less singularities which produce 
waves. A Taylor-series approach gives a solution valid for large s, but when z is 
large the method becomes useless and the behaviour at large heights remains 
unknown. The non-wave disturbance is no longer symmetrical, and now the 
waves decay like s-*, as do those given by the ridge ; the amplitude increases with 
height as far as the solution holds. As y increases, the amplitude falls off very 
rapidly, the actual rate of fall-off being largely determined by a. It seems that 
the extra singularities of the doublet integral are responsible for its peculiar 
behaviour, and they have been removed by bringing the length a into the 
mountain solution. 

The waves are not contained in a wedge, as might have been expected, but in 
a strip. Thus the energy of the waves is concentrated near the plane y = 0,  
immediately behind the mountain, and this probably accounts for the fact that 
waves can occur in this plane with amplitude greater than that of the waves given 
by the infinite ridge. 

As pointed dut above, the circular mountain solution gives the resonance effect 
with change of mountain radius. The maxima for waves in the plane y = 0 are 
rather more sharp than those shown by the infinite ridge, although the peaks 
become more rounded as y is increased The optimum value of a depends on the 
value of y chosen, but this effect is unimportant because of the rapid fall-off of 
amplitude. 

We can conclude, then, that any mountain will produce lee waves in a stably 
stratified air stream, the form of the waves depending on the shape of the moun- 
tain and the shape of the Z2-profile. The amplitudes will in many cases be negligible, 
but this is determined solely by the width of the mountain in relation to the 
characteristic wavelength of the air stream, and is otherwise independent of the 
actual shape of the Zz-profile. 

2. The equations of motion 
We shall assume initially that we have a weak source, of strength m, situated at 

the origin, and we shall consider the small (linear) disturbances which it produces 
in a steady main-stream flowing horizontally in the %-direction. We shall write 

velocity = ( V(z) + u, v, w), 
density = p(z) + s, 
entropy = S(z)  + 9, 
pressure = p(z) + 8, J 

where the undisturbed main-stream values V(z) ,  p(z), S(z), p ( z )  are functions of 
height x only, and the perturbation terms u, v, w, s, +,8 are all functions of the 
rectangular Cartesian co-ordinates x, y, z. The perturbation terms are assumed to 
be zero at large distances up-stream, and squares and products of them will be 
neglected everywhere. 

Far up-stream there is no flow in the x-direction, so that 

P’(4 +gp(z)  = 0, (6) 
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where g is the gravitational acceleration. Throughout this section primes denote 
differentiation with respect to z. The equation of state gives us the two equations 

p = K ~ Y  eslcv, (7) 

and 

for the undisturbed and disturbed regions respectively. Here K is a constant, C, is 
the specific heat of air at constant volume, and y is the ratio of the specific heats of 
air. C, and y are assumed to be constant. 

The linearized momentum equations are 

ppu+pvu,+pV’w+e, = 0, (9) 

p p v + p V ~ , + 6 ~  = 0, (10) 

ppw+Pvwx+gs+e’ = 0, (11)  

where suffixes denote derivatives. The terms ppu, ppv, ppw are included to give 
us a rigorous analytical method of eliminating any disturbance which may 
otherwise appear far up-stream. They can be considered as friction terms, and as 
such they were first introduced by Rayleigh (Lamb 1932, $242), or as the opera- 
tional representations of the terms pau/at, pav/at, pawlat, in which case p is the 
Heaviside operator. We will eventually let p + 0; in the second case this corre- 
sponds to time t+ co, giving the ultimate steady flow solution. 

We have two further equations, namely 

D 
Dt -(As+$) = 0, 

which reduces to 

and the equation of continuity, which with a source of strength m at the origin is 

pq5 + V$hX + WS’ = 0, (13) 

v s  wp‘ + 2 +- + ux +vv + wr = mS(x) S(y) 6(z). 
P P P  

Here ?I( ) is the Dirac delta function. Terms similar to that on the right of (14) do 
not appear in (9), (lo), (1 1) as the source is considered to be a source of mass but 
not of momentum. The p terms in (13) and (14) appear only if p is taken to be 
the Heaviside operator, but we shall see below that omitting them does not affect 
our result. 

We shall now take Fourier transforms, of the form 

w(x, Y, 2) = S_mm S_m_exp { G x  + T Y ) )  wo(z, 6 T )  d5dT? (15) 

of equations (S), (9), (lo), (ll),  (13) and (la), and then combine them to find an 
equation for wo. Suffix zero will always denote the transform. Equations (9) and 
( 10) become 

p(p+ Vi5)u,+pV‘wo+i~eo = 0, 
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If we multiply (16) by it and (17) by iq and then add them together, we can 
remove the terms in uo and vo by substituting from 

(19) 

(20) 

the transform of (14). Writing 

this gives 
k2 = tz + q2, 

m @) + i tp V’wo = k2Bo + (p + Vi t )2  so. 
P h +  V i t ) { s w - w ; -  P 

From the transforms of (8) and (13), we get 

where c = (y~p~- leW‘v ) t  
is the velocity of sound, and 

8‘ 0‘ p=-=- 
cpry 0 ’  

0 being potential temperature (P is the parameter which defines the static 
stability of the atmosphere). Using (21), the right-hand side of (20) becomes 

and we can neglect the second term in the curled bracket because k2 = O ( t 2 )  and 
(p+ Vi[)2/c2 = O(t2V2/c2) -g 0(t2), as V -g cin the atmosphere. We now differen- 
tiate (30) (with the right-hand side (24)) with respect to z, and remove the 0; term 
by using the transform of (11), (20) and (24), and (21). Then, dividing by 
p(p + Vi t ) ,  using the theorems 

(26) 
9 P’ -+-+p = 0, 
c2 P 

and using the fact that 

we have 

The right-hand side of (27) is zero for x > 0 and z < 0, but at the origin we have 
a discontinuity such that 

If we had omitted thep-terms in (13) and (14), the only difference in (27) would be 
that the (p + VitJ2 would be replaced by (p  + V i t )  Vie. 
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We can simplify (27) considerably by neglecting further terms. In the atmo- 
sphere V V r  < g, V2 < c2 and g/c2 and p‘lp are O($), so that 

and our equation becomes, for z =t= 0, 

with the same discontinuities at  the origin. 
It is convenient at  this stage to put p = 0 and to consider the effect of non-zero 

p later. We then have 

3. The solution for a doublet disturbance 
Lee waves are usually found to produce a down-flow on lee slopes, delaying 

separation from the surface (Scorer 1955) and, for the purposes of this paper, this 
should make a doublet better than a source as a representation of a mountain. We 
will therefore go on to find the flow due to a doublet, as we can derive the basic 
equation very simply from (30). 

The vertical perturbation velocity given by a doublet in the x-direction at the 
origin is simply the derivative with respect to x of that given by the source. 
Moreover, the vertical displacement of a streamline from its original position is 

and so its Fourier transform Q is another solution of (30). It follows that simply 
writing wO/ V = co will give the streamline disturbance produced by the doublet, 
since then the differentiation and integration with respect to x cancel. 

In  order to solve (31) (i.e. (30) with p = 0) reasonably simply we now assume 
that we have a simple-shear main stream, so that 

T ( z )  = 0, (33) 
and we assume that l2 = qPIV2 = const. (34)  
throughout the whole depth of the atmosphere. These are considerable restric- 
tions, but they have had to be retained for the rest of the paper. Both V” and 12 

are certain to vary in the atmosphere, but even so the results should show, in part 
at least, how the presence of stable stratification affects the flow. 

The solution of (31) can now be written 

[ 0 -  - AehlZ+Behi”, (35) 

in which A and B are arbitrary constants, and 

where (37) 
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We choose the square root in (37) so that the real part &?(K) is positive. As 
K 2  = O(gp/ Vz) ,  we can in (36) neglect the (g/c2 + /?)2 inside the square root. Now 
we must have co+ 0 as z+m, where possible, and also Q( - 0) = 0 on the ground 
(the horizontal plane z = 0). Thus, for K real, we must have 

m 
Q = w v  exp Ms/c2 + P) - Kz}. (38) 

The effect of the term exp {&(g/c2 +P) z} is small compared with that of e-Ks, and 
Scorer omits it, whilst Queney approximates it by [p(O)/p(2)]4. Here we will leave 
it out in the working and consider its effect later. We will necessarily have to take 
(38) as the solution for all values of K ,  and the positions of the singularities in 
the 5 Fourier Integral will determine the solution for imaginary K. We then have 

The integration with respect to 7 can be carried out explicitly, although it has to 
be done in two parts. 

First, we must consider the range > zZ/t, where 

t = J(y2+22). 

Substituting 7 = (sinh7, 
the 7 integral in (39) becomes 

(42) exp {icy sinh 7 - z J(t2 - b2)  cosh 7} ( (sgn 5) cosh 7 d ~ .  

The function sgn E, equal to + 1 when&?(() > 0 and to - 1 when&?(() < 0 (at the 
moment we are only concerned with 6 real) is necessary because, otherwise, if 
5 < 0 the limits of the integral would be interchanged. We can write (42) as 

-____- ' sgn ' a exp {igy sinh 7 - z ,/(% - Z2) cosh T} d ~ ,  ,ICEz - 12)  a,/-, 
- - -  ' sgn ' a Srn exp {ir, sinh (7 + i$,)} d7, J ( p - P )  ax -a 

(43) 

(44) 

where r, = + .tl{("y" + 9 ( ( 2  - b"}, 

and 

We have previously defined &?(K) > 0 in (37), making 4(c2 -Z2) > 0 when 161 =- 1, 
and now we define rl > 0 so that $, is real and sin $, > 0 ( I f 1  > b ) ,  or $, is pure 
imaginary (zZ/t < 161 < I ) .  With these values of $,, and putting 7 = p,, (44) 
is equal to 

- ssgn5 2 jm exp ( - ir, sinhp,) dpl, d ( p - P ) a z  --m 
(47) 
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since rl is real and positive (Watson 1944, 0 6.22, equation (10)). (Here KO is the 
Bessel function of imaginary argument.) Thus for 161 > zl/ t ,  (42) is 

This function has singularities at 6 = f I and 6 = f zZ/t, and before we can 
consider the 7-integral for 161 < zl/ t  (for which rl is pure imaginary), we must 
determine the path of the 6-integration as it passes these singularities. If instead 
of putting ,u = 0 in (30), we put p = V s  (which is justifiable since we shall let 
,u + 0, i.e. s 3 0), this is equivalent to replacing our l2 by 12t2/([- ie)2. The singu- 

and 

i.e. at 6 = 0, 6 = ic f zZ/t, 6 = is k I and [ = is. Thus thesingularities, apart from the 
one at [ = 0, are in the upper half of the [-plane, and therefore when we put p = 0 
we must take the path of the 6-integral on the lower side of the real axis. It follows 
that the singularities other than that a t  6 = 0 do not contribute to the 6-integral 
for z < 0. Treating the p-terms as friction forces, and hence omitting them in (13) 
and (14), leads to the replacing of l2 by 12[/(6- is), with the same result. With this 
path of integration, then, we have 

and (53 )  

where r2 = + &212 - &2). (54) 
Thus our boundary condition of friction or of time dependence has determined 

the position of the singularities by a rigorous analytical method, and has given the 
same result as the upper boundary condition used by Queney (1947) and other 
writers. Scorer's condition, which he uses in all his papers, is given by taking the 
complex conjugate of (52) ((53) does not occur in two-dimensional solutions), and 
therefore takes the path of integration above the singularities. As we shall see, 
these singularities account for the presence of waves, and it follows that Scorer's 
condition should result in waves appearing up-stream but not down-stream. It is 
consequently difficult to see how Scorer's condition can possibly be correct. 

We can now return to the 7-integral. For 0 < 6 < x l / t ,  (43) is 

with 

and 
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According to Watson (1944, $6.21, equation (lo)), (56) is 

The range -zl/t < 6 < 0 gives the complex conjugate of (55), but as the relation 
between rl and r2 also changes, we have the result (49) for all 6, and 

This integral cannot be evaluated explicitly, and we have to proceed by deforming 
the contour. 

When x < 0 we deform the path into the lower half-plane, as shown in figure 1, 
so that 

(63) 
n 

since the circular part gives no contribution in the limit. Writing ,$ = -i$, we 

Here we have used the fact that 

gK,(ir) = - (477) J,(r) (66) 
(from Watson 1944, $ 3.7, equation (8)). 

When x > 0, we deform the path similarly into the upper half-plane, and obtain 

where for reasons to appear the subscript N stands for 'non-wave' and W for 
'wave '. Putting 6 = i$ into the integral along I, gives the same value (65) for &. 

For the case of neutral stability, for which I = 0, (65) is the complete solution, 
and can be integrated exactly (Watson 1944, $ 13.2, equation (5)). This gives 

(70) 
mx 

6 = 2 n l T ( x 2  + y2 + 2 2 ) ~  

This value is the same as the vertical velocity perturbation due to a source of 
strength m/V in a flow with uniform density and no gravitational forces, and 
provides a useful check on the present work. 
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When 1 > 0 (stable stratification), we will write (62) and (65) in a non-dimen- 

sional form by taking Z-l as unit of length and V ( 0 )  as unit of velocity, so that 
x* = 21, $* = @-I, V* = V(z)/V(O), m* = mP/V(O), etc. Omitting the asterisks, 
the only visible difference in (62) and (65) is that 1 is replaced by unity. 

If we now substitute into (65) from 

(Watson 1944,s 5.22, equation (l)), and expand the J(+, + 1) in ascending powers 
of @, we can obtain an asymptotic expansion valid for large 1x1 : 

This expansion is adequate when y is not too large, but no suitable approximation 
has been found to cover the case when y is large. 

We are more interested here in the wave term CF, which comes from the 
integrals over the loops L,, L,, and which occurs only for x > 0. The integral here 
is difficult to deal with, particularly when y is too small or too large; when y is 
small the singularities at = z/t and E = 1 are close together, and when y is large 
the singularity at 5 = zjt is near to that at the origin. We therefore consider first 
the case of medium values of y, for which 

xz x 1 - -  > l ,  p 1 ,  ( 3 
so that the singularities are all well separated. We can then write 

(73) 

(74) 

and the dashed parts of L, and L, in figure 1 are included. Since we have assumed 
large x, the main contributions to  the integrals over L, and L, come from small 
values of 6 - z/ t  and E - 1, respectively, and we can neglect certain terms on this 
account. Consider first the integral over Ll. We substitute 

in (62), so that, from (73), we can neglect p2 /2 t z  compared with1 - z / t  and z / t ,  and 
we have 

exp(i~x/t+ix$~/2tz) 

where x 2 -  
2tz 
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and the contour L3 is shown in figure 2. Now, since the integrand has no singu- 
larities other than at the origin, 

=/omd7/:mexp (iX$2-$cosh7) coshTd$ (80) 

according to Watson (1944, 0 6.22, equation (5)). Putting 

cosh 7 
$ = x + V ,  

and working out the v-integral, 

again according to Watson (1944, $6.22, equation ( 5 ) ) ,  first writing cosh27 in 
terms of cosh 27. The Bessel function K*(1/8iX) can be expressed as a simple 
function by means of Watson (1944, 0 3.71, equation (13)). 

For the integral over L,, we put 

E = l+ i$  (84) 
in (62) ,  and neglecting @ terms in the same way as before we have 

the curved part of L, giving no contribution. Thus for z( 1 - z / t )  % 1 and xz/t 
(74), (77), (83) and (85) give 

1, 

This result shows that the amplitude of the waves falls off fairly rapidly as 
y increases, so there is little point in trying to find a solution for still larger y. 
However, the solution for small y, and in particular for y = 0, is interesting, 
although mathematically difficult. For this case we assume simply xz/t  $ 1. 
Since the singularities at E = z / t  and ( = 1 are now close together we have to take 
a single loop which passes round both, i.e. miss out the dashed parts of loops L,, 
L, in figure 1. Thus, again making the substitution (75) we have 

where Y = 2/(2z(t-z)} (89) 
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and L4 is shown in figure 2. Note that we can no longer neglect 1,+~/2tz in com- 
parison with 1 -+. We have made L4 lie entirely outside the circle ]$I = Y 
because the method is now to expand J(1- Y2/$2) as a convergent power series 
and integrate term by term. If Y is not too large (i.e. fairly small y), only two or 

m - m  - 

FIGURE 1. Contours in the 5-plane. FIGURE 2.  Contours in the @--plane. 

three terms of this series will be needed to give a reasonably accurate result. How- 
ever, the evaluation of the integrals is complicated, and is therefore given as an 
appendix to the paper. The result is 

where X and Y are given by (78) and (89), 

and 

Any further terms can be worked out if required. 
An alternative approximation can be found by the method of steepest descents. 

To do this we must deform the contour L4 (in (88)) so that it lies entirely in the 
region where - 

The integral is then dominated by 
(94) 

exp (iX$2 - $-) = ef (@) .  (95) 

The method of steepest descents is based on the fact that if some parameter, in 
this case x, is large, the main contribution to the integral is near the point where 
f ’($) = 0, i.e. the point $ = - i l2X.  The contour is accordingly deformed to pass 
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through this point, which is a ‘col’ on the surface z = W{f ($)}, so that 3{f($)} is 
constant all along it, and (to make sure the integral converges) so that it descends 
on each side of the col. W{f($)) changes as rapidly as possible along this curve 
because it is perpendicular to the contours W{f($)} = const., and the integrand 
does not oscillate rapidly along it, so we can approximate to the integral by 
considering the integrand near the col. The line of steepest descents in this case is 
shown as L, in figure 2. 

For (94) to be true all along this path we need to have 1/2gX large (i.e. tz/24x 
large), so the approximation will only be good for large z, since xis already assumed 
large. Under these conditions we will usually have Y -= l / 2 X  ((2z( t -z)})  -= tz/z), 
and the line of steepest descents will pass outside the singularity at $ = Y .  If this 
is not so, the path would have to be deformed, but the descent would probably be 
steep enough if it were made to approach + co along the real axis, the negative 
part being unchanged. The leading term of this approximation gives 

In  the case y = 0, (96) can be obtained directly from (90) and (91) by allowing 
l/X to become large. Thus the approximations are consistent. It should be 
pointed out, however, that the value of (96), or any other approximation to (88) 
for large z, is limited, because in obtaining (88) terms have been omitted which, 
though small compared with those retained, may still be O( l ) ,  and hence O(X+2), 
when z is large. From (96) it would appear that the amplitude of the waves tends 
to a finite value as z is increased, and this value is zero if V increases with height. 
This result would still be essentially true if we re-introduced the factor 
exp (i(g/c2 +/3) z }  (omitted after (38)), since its effect is small, although the ampli- 
tude might then theoretically increase indefinitely. 

Each of the approximations shows waves with phase 

xz tz -+- t 2x‘ (97) 

In  the region where the solutions hold the first term of (97) is dominant, and 
taking it alone gives lines of constant phase, and therefore wave crests and 
troughs, which in planes z = const. are hyperbolic, 

The phase Cis the distance of the line from the origin along the x-axis. From (98), 
the waves are perpendicular to the stream on y = 0,  but curve back downstream 
as y is increased. The asymptotes of all these hyperbolae pass through the origin 
and the angle they make with the x-axis, tan-l(z/C), is less the greater the 
horizontal distance of the curve from the doublet, but greater at greater height. 
Hence, as we go downstream at a fixed height each wave curves back more rapidly 
than its predecessor, making the wavelength increase as y increases, but each 
wave curves back less rapidly as we go upwards at a fixed distance downstream. 

5 Fluid Mech. 6 
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The behaviour of the wave amplitude as y increases is peculiar. For y = 0 the 
waves decay downstream as shown by (90) and (91), like x-1 for small x/2z2 (also 
given by (96)) and like x-* for large 2 / 2 9 .  As y is increased, the rate of decay is 
reduced, and when y is large enough for the first approximation (86) to hold, the 
waves, being mostly due to the first term, have more or less constant amplitude. 
The amplitude falls off fairly rapidly in the y-direction, like y/(y2+z2)$. There 
seems to be no possible physical explanation for the changing rate of decay as y 
increases, or for the existence of the non-decaying waves, and it can only be 
assumed that the solution is inadequate because the doublet, being a point 
disturbance, has no significant length. Support for this reason can be shown by 
extending the solution, first to a line of doublets in the y-direction on the ground, 
and secondly, to a circular hill ( 5  5). 

The solution for the line of doublets is obtained by replacing y in (86) by (y - yl) 
and integrating with respect to yl from -a to a, for a line of length 201. This gives 

and the solution is valid for x( 1 - z/,/{(y - a)2 + z2}) 9 1, + z2} $ 1 
and 2 ~ ~ / { ( y f a ) ~ + x ~ }  9 1; the last condition arises because to perform the 
integration the cos (xz/t+tz/2x) in (86) has been replaced by cos (xzlt). These 
conditions imply that x must be large and that y must be large, but not too large, 
compared with a. We can see that the waves given by (99) decay like x-1, and thus 
some of the peculiarities of the single doublet solution have been removed by 
introducing the significant length a into the disturbance. The actual size of a is 
not important, and it could be very small, so that the disturbance would be almost 
at a point. The other approximations cannot be integrated simply in this way, so 
the behaviour of the rate of decay with increase of y for the line of doublets cannot 
be shown. 

xz/.J{(y + 

4. The solution for an infinite ridge 
Before going on to deal with the flow over a circular mountain it is convenient, 

for purposes of comparison, to write down a simple approximation to Queney's 
solution for the two-dimensional ridge (equation (1)) when E2 is constant through- 
out the atmosphere. The Fourier Transform of (1) is 

C"(0, ,L 7) = W b  exP ( - b c s g n  0 q7) ,  (100) 
and to obtain the flow over the ridge we have to replace the m/4n2 of (38) by the 
right-hand side of (100). The 7-integral now gives unity, and so we have 
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again using the non-dimensional co-ordinates. We deform the contour just as in 
the three-dimensional case, so that we have the wave term arising for x > 0, given 
by the singularity at 6 = 1. The non-wavy disturbance, CN, is given by the 
integrals along the imaginary axis, and writing E = (sgn x) i$, and approximating 
for large 1x1 ($ Q I), we get 

cN N -92 exp { - $1.1 - i b  (sgnx) $ + iz} i(sgn x) d$, (103) 

1. (104) 
=-( Hb b cos z - x sin z 

V x2 + b2 
This term has been obtained by Scorer (1953), but with his upper boundary 
condition, which leaves the singularity at f; = 1 below the real axis, he gets 
a positive sign before the x sin z. In  this paper Scorer neglects the wave term on 
the grounds that the ridge is wide enough to make its amplitude small, but here 
we shall investigate it further. 

7 s," 

- 
The wave term is a loop integral, with Ly'instead of in (102), and putting 

6 = 1 + i$." and again approximating for 2 1 (k2 < l), this gives 

exp {ix - b - $-"(x + ib)} 

x { - exp( - z ,/2$ e-3Ti/4) + exp ( - 2 ,/2$ $id$, ( 105) 

the contributions coming from the straight parts of the loop only. This can be 

Hb = y2/(2n) z exp [ - b + {z2b/2(x2 + b2)}] 

(107) 
exp (i[x + {z2x/2(x2 + b2)} - in]) 

x9(  (x + ib)g 

Lyra's solution (1943) for the small hill of rectangular cross-section is essen- 
tially the same m this solution with b = 0, Hb = const. (= m/n), or, in other 
words, an infinite line doublet, because substituting these values throughout the 
working does not alter it in any other way. This gives the wave term 

which is equivalent to the approximation found by Queney (1947, equation (97)), 
but he has made it slight mistake in proceeding from his previous line. Queney 
points out that the approximations used in obtaining (105) are not very good 
unless x2 % z, i.e. unless the height is not too great. 

If x is large enough compared with b, the dependence of wave amplitude (in 
(107)) on the mountain size is essentially given by Hbe-h. This factor is exactly 
the same as that given by the waves of the two-layer solution of Scorer (1949) 
(when his wave-number is taken as unity), and its behaviour has been discussed 
by Corby & Wallington (1956). We will return to this point later, when discussing 

6-2 
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results, in 5 5. The line doublet wave term (108) gives greater amplitudes than the 
ridge of corresponding ‘strength’ (i.e. volume per unit depth, 7rHb equal to m), 
but the character of the waves appears to be the same. We shall now go on to show 
that in three dimensions this last statement is not true; the single-point doublet 
does not give waves of the same character as those given by a circular mountain. 

5. The solution for a circular mountain 
The extension of the solution to an isolated mountain, instead of a doublet, is 

difficult, because, for the solution to be any use, the 7-integral of the inverse 
Fourier Transform has to be worked out exactly. It is for this reason that it has SO 
far proved impossible to fhd  a suitable elliptical or oval mountain, which would 
have given two parameters to vary, and thus this section has had to be restricted 
to a circular mountain. The mountain shape we shall use is given by equation (4), 
for which the Fourier transform is 

(109) 
1 

60(0, E, 7) = 5 Ha2 exp { - a J(% + s”}. 
Here a is the radius of the hill at height H/26, whereas for the ridge (l), b is the 
half-width at height 4H. 

With this ground shape we get the double Fourier Integral 

It is obvious that when I = 0 the flow is simply that due to a doublet of strength 
m = 2nHa2V(0) at z = -a, for which 

When I is not zero but is still constant throughout the atmosphere, we make the 
same substitution as before (41), and the 7-integral in (110) becomes, in the same 
non-dimensional units, 

where rg = t:g2-z2+ 2aztsgnt,/(t2- I), (114) 
t: = y2+zz+a2, (115) 

and tan$, = Ey/{zJ(t2- l)+atsgnQ. (116) 
This time rg is never real and negative (except at = 0, which will be a singular 
point anyway), so we can define W(r,) > 0 everywhere. Moreover, with a + 0 we 
can see from (112) that the integrand - to  as 7+00 (for real t),  so that (113) is 

- Ssgn ‘ 2 exp ( - r3 coshp,) dp,, l j ( t2 -1)az  -m 
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according to Watson (1944, 5 6.22, equation (5)). We then have 

69 

This integral has a very important difference from the corresponding one of 
the doublet solution (61), namely, that the argument r3 of the Bessel function is 
never zero (a  $: 0). This is equivalent to saying that 

[2t~-z2+2az[J(~2- 1) (120) 

(121) 

(122) 

(123) 

(124) 

is never zero when W(5) > 0 and W{J( tZ-  I)} > 0. For (120) to be zero we must 
have 

E4t14 - 222t,2[2 + 24 = 4a2z2E2(12 - I),  

which gives 

where 

and hence 

If we take the upper signs, (122) shows that $(t2) > 0, and since 9(6), 
W { J ( t z -  l)} > 0, Y(E) > 0 and 9 { , / ( ( 2 -  l)} > 0, so that 9{t,/(t2- 1)) > 0. But 
by (124) Y(&f-z2) > 0 also, and therefore (120) is never zero because it has 
positive imaginary part. Similarly, if the lower signs are taken, ( 120) has negative 
imaginary part. These imaginary parts can only be zero if y = 0, in which case 
c2 = z2/(z2-a2),  and if z > a, (120) is obviously positive. If y = 0 and 2 < a, 
5 = & i z /J(a2-z2)  and J(%- 1) = & ia/J(a2-z2) ,  and whether upper or lower 
signs be taken, (120) is negative and non-zero. The fact that r3 is never zero is 
a considerable simplification from the doublet integral, because it means that we 
now have only one pair of singularities, at  E = rf: 1, which produce waves, and 
thus we have no difficulties arising from the behaviour due to singularities which 
are close together. 

The method of dealing with (1 19) is essentially the same as before. The non- 
wavy component of the disturbance, &,,, is again given by integrals Il or 12, along 
the imaginary axis of the g-plane, and 

62 ' D { y z + 2 2 - a 2 +  22 2ia IyI}, 

D = (a2 - z2)2 + 2y2(a2 + 9) + y4 > 0, 
222 
D t2t; - 22 = - {az(zZ- a2) - a2y2 ia IyI t:}. 

- -  
X J,[,/{3GT2ti+z2-(sgnx) 2az11.J(P+ ')}Id$. (125) 

J(-y%%: + z2 - (sgn x) 2az$ J( $2 + I>> 

It is interesting to note that the up-stream and down-stream components of this 
part of the disturbance are no longer symmetrical. An asymptotic expansion for 
(125), found in exactly the same way as for the doublet solution, is 

+a2J3(z)) 

J ( 2 )  + 12a 2 5  (J,(z) ( 2  + 5) - $ (a2 +t:) + 
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This is valid for large x, but will not be adequate when y or a is large. However, as 
pointed out above, the present paper is more concerned with the wave terms of 
the solution, and Scorer (1956) has already worked out the non-wavy terms for 
the flow over circular and oval hills when Z2 = const. Scorer obtains his solution 
by his method of integrating up the flow over infinite ridges at all angles to the 
flow. 

To find an approximation to the wave term, now given by a single loop 
integral (L2), we put 

and approximate for large x, expanding the terms in ascending powers of $. All 
terms up to 0(7)3) have been retained. This gives 

where x(y2 + a2) 
2u222 

XI = 

and L3 is the same contour as before (figure 2). We can now expand the remaining 
square roots if 

that is, if 

This condition restricts the range of the solution considerably, especially when z is 
large, but we will still be able to see the more important characteristics of the 
solution. The behaviour for large x has not been found, and in any case the 
approximations involved in reducing the wave term to the form (128) are not 
very good when 2 is too large or when x2 is not & t:, since in these cases terms 
which are O(1) have again been neglected. If (131) holds, then, (128) can be 
rewritten as 

where 
and 

1 } $ 3 + . . . .  (134) 
yz + a2 - 4x2 

8u2z2(y2 + u2)i + 
2(y2 + u2)% 
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The next step is to expand the Bessel Function in a Taylor Series: 

K,(A) = Kl{ ( y2 + a"*} + ( y2 + a2)* xKi{( y2 + u2)*} + . . . . (135) 
This series is convergent only for 1x1 < 1, but if we make 

( ( 2 ~ ) ~ ( y ~ + u ~ ) ~ ) / ( ( y z + a ~ ) ~  [UZ(5+4x )  i-zstfxh] 
- (y2 + uz) uz[4tf + 2+azx*] + 4u3z3) 9 1 (136) 

then 1x1 < 1 for all the @which contribute significantly to the integral, and the 
approximation will be valid. Fortunately, the condition (136) is satisfied by all 
combinations of x, y, z, a which satisfy (131), and is consequently no additional 
restriction on the range of the solution. This method of solution will not work, 
however, if both y and a are zero, since then the Bessel functions on the right-hand 
side of (135) become infinite. The case a = 0 is really that of the doublet solution, 
but putting a = 0, 2nHa2 = m at this stage will not give the doublet answers 
because the doublet integral has the extra singularity. The limit as a+ 0 of the 
asymptotic solution for the mountain is not the same as the asymptotic solution 
for the limit as a+ 0. 

Substituting the Taylor series (135) into (132), only the even powers of @ con- 
tribute to the integral, and 

- 9 Ko{%4Y2 + a2)> 
2*6Ha4z3 COB (x - 3n/4) 

(( y2 + a2)8 + 8a2z2(y2 + a2)* 

7y2 - a2 u4 + 4y4 + 4z2y2 + 5a2y2 
n*~(yz+a2)2x* [I 2(y'+u2)- 8a2z2 6 + 

)K1{J(y2+a2),>] 

+ O(x-5). (137) 

7y2-a2 3u4 - 3y4 - 8y2z2 3a4 + 3y4 + 6y2a2 + 6y2z2 - 2a2z2 
6z2( y2 + a2)* 

+ + 

Recurrence formulae (Watson 1944, 5 3.71, equation (3)) have been used to  write 
the derivatives of the Bessel function in terms of KO and K,.  Both the terms of 
this series are exact, and terms of orders higher than @3, which have been omitted 
from (128), contribute only to terms of at most O(x-3) in this solution. 

The waves shown by (137) ultimately decay like x-9, as do those of the infkite 
ridge solution (107). The rate of decay no longer varies as y increases, and non- 
decaying waves do not appear. The mountain, by introducing the length a into 
the problem, has removed one of the singularities of the doublet integral and, with 
it, the peculiar behaviour. The first term of (137) is directly related to  the second 
term of the doublet approximation for larger y (86), which comes from the same 
singularity. Figure 3 shows the waves in the central plane yl = 0 for a circular hill 
with H1= Q and a1 = 2, and also the shape and position of the wave crests in the 
horizontal plane x l  = 1, for the same hill. In figure 3 the main-stream velocity 
V ( z )  has been taken to be constant, so that the amplitude of the waves increases 
with height as far as the solution holds, Including the additional factor 
exp {$(g/c2 + p) z] would make no significant difference. Figure 3 has been com- 
puted from both terms of (137), and shows these wave terms only. The non-wavy 
part of the disturbance, Q (126), has been left out so that the waves can be seen 
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more clearly. Figures 4, 5 and 6, below, have been computed using only the first 
term of (137). Including the second term has little effect on the actual amplitude, 
but alters the positions of the waves relative to the mountain; in fact, the co- 
ordinate y in figures 4,5 and 6 should really be taken as a curvilinear co-ordinate 
parallel to the wave crests, but the effect of this is also small, as can be seen from 
figure 3. 

1.5 - 

21 1.0- 

0.5 

0 
0 4 8 12 16 20 24 28 

x l  

FIGURE 3. Waves in the central plane y l=  0, as shown by the theory for a circular 
mountain with HI = 3 and al= 2, when main-stream velocity V(z)  and static stability 
parameter D(z) are both constant. The vertical scale for the waves is 124 times the vertical 
scale for the mountain and for the undisturbed streamlines. The lower diagram shows the 
shape of the wave crests in the plane zl = 1, for the same mountain. The approximations do 
not hold right up to  yl = 0 on the first crest. 

I n  the y-direction the amplitude of the waves given by the circular mountain 
falls off very rapidly, because of the Bessel functions, and this is shown for various 
values of at in figure 4. The rate of fall-off appears to depend primarily on a and 
is independent of z, so that the waves are not contained in a wedge, like ship 
waves, but in a strip. The width of the strip is determined by a and is roughly 
equal to 2a. 



Waves in the lee of mountains 73 

Perhaps the most interesting feature of (137) is the dependence of amplitude on 
mountain width. Figures 5 and 6 show the amplitude as a2 is varied with height 
constant, and as al and Hl are varied in proportion, preserving the mountain 
shape, respectively, for various planes y = const. These figures also show the 

0 1 2 3 4 

Y l  
FIGURE 4. Fall-off of amplitude of waves as yZ increases, 

for circular mountains with varioua values of al. 

0 1 2 3 4 

Y l  
FIGURE 4. Fall-off of amplitude of waves as yZ increases, 

for circular mountains with varioua values of al. 

a1 
FIGURE 5. Dependence of wave amplitude on mountain width aZ, when mountain height 
is kept constant, for various planes yl = const., and for the infinite ridge with the same 
values of al. 

corresponding curves (on the same scale of amplitude) for the infinite ridge with 
the same values of al. (The value of bl, the half width at  height &HZ, of the moun- 
tain is only slightly greater than that of the ridge with the same al.) Each of these 
curves has a fairly sharp peak, so the idea,, due to Corby & Wallington (1956), 
that a ‘resonance’ of the air stream with the mountain is needed to produce large 
amplitude waves applies equally well in two or in three dimensions, and in one- or 
two-layer solutions. As yl increases, the value of al which gives maximum ampli- 



74 C. D. Crupper 

tude (for the circular mountain waves) increases and the peeks become less sharp, 
but as the amplitude falls off very rapidly this is unimportant and only the yl = 0 
values will be relevant. Waves of maximum amplitude (always in the plane y = 0 )  
are given by a1 = 0.6 for a mountain of fixed height (figure 5 )  and by a1 = 2.1 for 
a mountain of fixed shape (figure 6). The corresponding figures for the ridges, 
a1 = 1.35 and a1 = 2.70 (bl = 1 and bl = 2) show that they are wider than the 
optimum circular mountains, and the peaks of the curves given by the ridge are 
not so sharp as those given by the mountain in plane y1= 0. 

a1 
FIGURE 6. Dependence of wave amplitude on mountain width al, when height H1 and width 
are varied in the same proportion, for various planes yl = const., and for the infinite ridge 
with the same values of al. 

These curves also show that for any al less than about 3-75, the waves produced 
by the mountain in the plane yl = 0 have greater amplitude than those due to the 
ridge, although the mountain waves in planes yl = 1 and yl = 2 are always 
smaller. The fact that the circular mountain can give rise to bigger waves than the 
ridge is probably because the waves do not spread out in a wedge, and thus all the 
energy of the waves is concentrated in a narrow strip immediately behind the 
mountain. As a1 becomes larger, the concentration of the energy is reduced 
(cf. figure 4) and eventually all the waves have to have amplitude smaller than 
those produced by the ridge. 

The amplitudes all tend to  zero as a1 becomes large, the waves due to the 
circular hill falling off slightly more rapidly than those due to the infinite ridge. 
As pointed out at the end of 0 4, the curves for the infinite ridge solution in figures 5 
and 6 are exactly the same as those for Scorer’s two layer solution (1949), so that 
neglecting waves on the grounds that a1 (or bl) is reasonably large can only be 
justified if the waves of each type of solution are neglected. It would appear that 
any mountain will produce some form of lee waves in any stably stratified air 
stream. Whether the waves can be neglected or not depends entirely on the width 
of the mountain or ridge in relation to the wavelength, for all types of waves. 
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Appendix 

expanding the factor ,/( 1 - Y2/$2) in (88), 
For small y, when the wave-producing singularities are close together, we have, 

and we have to evaluate integrals of the form 

f,(x) = 1 $1-2n eixSaK I($)d$., 
L4 

for n = 0, 1,2 ... . 
When n = 0 we can integrate by parts, and we have 

n n 

The integral F(X) = /L4e{x@'Ko($) 

can be worked out in exactly the same way as (79), and is 

With (l40), this givesfo(X) as shown in (91). This is the only term needed when 
y = 0. 

The next integral,f,(X), can be found quite easily by integrating fo(X) by parts 
again, in a Merent way 

Asfo(X) and F(X) are known this givesf,(X) (92) immediately. 

any n, 

For instance, integrating (144) once, 

The remaining f,(X) can now be deduced from (144) and the fact that, for 

fn+l(X) = iJfn(X)dX. (145) 

i 2iXfO(X) dX = f2(X) + i P(X) dX. s s 
Integration by parts gives 

i 2iXfO(X) dX = i2ix f0(X) dX - i 2i f0(X) ax ax, (147) s s Is 
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and, from (140), we have 

= SiXF(X) - i P(X) ax I 
Combining (146), (148) and (150), we get 

(149) 

f*(X) = +{(ZiX + l)f1(X) - 2iXP(X)}, (151) 
which gives (93). 
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